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We study the analyticity in cos@ of the exact quantum-mechanical electric-charge-magnetic-monopole
scattering amplitude by ascribing meaning to its formally divergent partial-wave expansion as the boundary
value of an analytic function. This permits us to find an integral representation for the amplitude which
displays its analytic structure. On the physical sheet we find only a branch-point singularity in the forward
direction, while on each of the infinitely many unphysical sheets we find a logarithmic branch-point
singularity in the backward direction as well as the same forward structure.

I. INTRODUCTION

In investigating a new semiclassical approach to
the scattering of electric charges by magnetic
monopoles,' we became interested in the analy-
ticity of the scattering amplitude in the cosine of
the scattering angle 6. There are several reasons
to expect nontrivial analytic structure for this am-
plitude. First there is a violation of crossing sym-
metry in charge-monopole scattering.? Second,
this system exhibits infinitely many “rainbow” an-
gles 6, where the number of trajectories which con-
tribute to the classical cross section at 6, increas-
es with n.® Third, at these rainbow angles the
classical scattering cross section is divergent.?
And fourth, the rainbow angles 6, have a limit point
at 6, -7 as n— < (the backward “glory”). It is in-
triguing to ask what effects these classical features
have on the quantum-mechanical amplitude.

To a large extent an answer to this question al-
ready exists. In their study of a semiclassical ap-
proximation to charge-monopole scattering, Ford
and Wheeler* point out that apart from a forward
“Rutherford” pole, the quantum-mechanical ampli-
tude is continuous at the rainbow angles and even
at the glory. The classical features are recovered
in the limit that the Dirac quantization number eg/
4m becomes infinite. So it is already clear that the
quantum-mechanical amplitude is much better be-
haved than the classical one and it only remains to
ask whether there are any effects of the classical
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features on the analytic structure of the quantum
amplitude.

Section II exhibits the exact quantum-mechanical
scattering amplitude f(cosf) as a divergent series
and defines the prescription for summing it. In
Sec. III we find an integral representation for
f(cos®). In Sec. IV we study the singularities of the
integrand of this representation and determine
their effect on the analytic structure of the inte-
gral.

II. THE SCATTERING AMPLITUDE

The Schrodinger equation for this system has
been solved by Tamm® and the scattering amplitude
given by Banderet.® The result is

X Z(l+u+%)e“““““*‘/Z’Pi“"’(x) (1)

1=0

where Z=c=1 and

w=|eg|/am,
A(p)=(p2-p?)t2_p, (2)
x=cosb,

with (p%2- p2)/2>0 for p>u. Here 6 is the scat-
tering angle, e and g are electric and magnetic
charges, p is a positive integer or half-integer
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(the Dirac quantization number), and P3*:°(x) is the
Jacobi polynomial.”

As Ford and Wheeler have pointed out,* (1) is a
formally divergent series which can be summed by
the methods of Euler.® They split off the leading
behavior (in Z) which they call the “Rutherford”
sum®

1-x

[T
fl(x)E——.l—(—— d@+p+d)etepmo) . (3)
ik \ 2 =0
This series they sum via Euler’s method to

finy =i B (L-x)? @

With the “Rutherford” series f, removed, the term-
wise difference f - f, becomes conditionally conver-
gent for —-1<x<1, and Ford and Wheeler sum it
numerically to arrive at their curves for the exact
quantum-mechanical differential cross section.

A comparison of the series (3) with the generating
function for the Jacobi polynomials’ suggests a
prescription for summing the series originally due
to Abel.® We apply the method to the termwise dif-
ference f - f,.

Consider a related series

F(x,w)= 3 [+ +5)[€ A0/ _ 1] P3O(x)an!
1=0
(5)

(for —1< x<1) which converges when 0< w< 1. Ob-
serve that formally

(6)

7 3
f(x) ‘f1(x) = % et (1 ; x) F(x’w)
w—> 1=
Abel’s prescription as applied here consists in
first summing the series F(x,w) with 0<w<1 and
then taking the limit w — 1—. This prescription ap-
plied to (3) yields (4). We propose to adopt (6) as
the definition of f — f, and investigate the analytic
structure in x of the right-hand side.

III. THE INTEGRAL REPRESENTATION

It is possible to find an integral representation
for F(x,w) by introducing a Laplace transform. We
sketch the method.

Define

P(p)=pe AP _p _imu2/2 (7)

with A(p) defined above in (1). Note that ¥(p) is

certainly regular for Rep> u and (p)~0 as |p[
—~, So Y(p) can be written as the Laplace trans-
form of a function we will call y:

w(p)=fwdy e®%(y), Rep>p. ®)
0

We may insert (7) into expression (5) for F(x,w)
to find

o

imu?

F(x,w)=+ 5 ZP?“"’(x)w'
i=0
o S U+ BPEOCl (9)
1=0

The first series in (9) is just the generating func-
tion for the Jacobi polynomials’ and can be summed
to

o

Fo(x,w)= ZP?“"’(x)w’

1=0
=22 R x,w)[1 -w+R(x,w)]*, (10)
R(x,w)= (1 - 2xw +w?)'/2,

Here R(x,w)>0 for -1<x<1 and 0< w<1,

If we denote the second series in (9) by F,(x,w)
and insert the Laplace integral (8) for ¥, we find
upon interchanging summation and integration

Fy(x,w)= f dyx(y) Y e ten+1/2)9p2,0(x)pl
o =0

= f dy x(y)e™®+Y2F (x, we™).
0

The last step follows from the definition (10) of F,,.
Change the integration variable to ¢=¢"¥ and com-
plete Abel’s prescription by taking w — 1— to arrive
at our final expression for F(x,1):

imu? (1 x\-1/2
ree, 0= (%)

+fldtx(— Int)t* “Y/2F (x,t). (11)

Finally, since we have defined x by (8) as an in-
verse Laplace transform of y we may hope to find
a closed-form expression for it. This is in fact
possible, and the result is'®

y+me

=2 2 in)L/2
x() = imu o L(u(y? + 2miy)t/?). (12)
Thus our result for the integral representation

of the scattering amplitude f(x) is

i g 1=\ w® L (1ox\E )
f(x)=2—£‘e*'u<7ﬁ) - et (T") e @2y [ at e (IR G, L - £+ R(x, D]
0

(13)
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with R(x, () defined in (10).

As is well known, the amplitude f(x) has the kin-
ematical singularities of a helicity amplitude."
The kinematical singularity-free amplitude is [(1
- x)/27"f(x). The remainder of this paper is de-
voted to the study of the analytic structure of
F(x,1) which is related to [(1 - x)/2]™[ f(x) - f,(x)]
through a-independent factors.

We may remark here that [(1 - x)/2]™f(x) does
not have a simple pole at x=1. Its leading singu-
larity as x—1 is given by the contribution from f
[cf. Eq. (4)]. 1t is a multiple pole or a branch point
according to whether p is integral or half-integral.
(We assume of course that 1 #0.) Compare this
with the Coulomb amplitude which has a forward
pole at x=1 as well as a forward branch point, but
the latter appears only in an overall phase, so
there is no effect of this singularity on the scat-
tering cross section. We shall see in the next sec-
tion that the remaining term F(x,1) also has unus-
ual analytic properties in x as compared to the
Coulomb amplitude.

IV. ANALYTIC STRUCTURE OF F(x,1)

The leading singularity of F(x,1) at x=1 is given
by the first term of Eq. (11) [cf. Eq. (16) below]. It
is a pole or a branch point depending on the value
of 1. Next consider the integral in (11):

1
1x)= [ dt =2 (- I)R™ (x, 1)
Q

X[1—t+R(x, )], (14)

This integral is originally defined for —1<x<1.
The integration in ¢ is along the real axis. The ap-
propriate branch of R is defined after (10).

We shall now study the analytic continuation of
I(x). In particular, we shall (a) show that I(x) is
holomorphic in the plane cut along the real axis
from 1 to «, (b) determine the nature of the branch
point at x=1,(c) analytically continue I(x) to a sec-
ond sheet and show that it has a branch point at x
=—1 on this sheet, (d) determine the nature of this
branch point.

The singularities of I(x) will occur when there are
end-point or pinch singularities in the integral.'?
In the absence of these singularities, the analytic
continuation can be performed by contour defor-
mation.'? Thus we need to locate the singularities
of the integrand and determine their motion in the
complex ¢ plane as functions of x.

An inspection of (14) reveals three singularities
of the integrand. First there is a fixed (in x)
branch point at £=0 due to the logarithm in the ar-
gument of x and the presence of #*'/2, Second
there is a pair of moving singularities located at
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FIG. 1. Contour specifying I(x) on an adjacent Rie-
mann sheet.

LX) =xx (= 1)H/2 (15)

where K has zeros. Note that /,/_=1 and that the
point ¢ =x bisects the line connecting £ (x) and ¢.(x).
[There is also a potential singularity due to the
vanishing of 1 - {+R at /=0, but with the phase
choice for R given after (10) this does not occur. ]

By (15) it is apparent that there is an end-point
singularity at x=1 since ¢,(1)=1. In addition there
is another coincidence of {, at /=~ 1. This can lead
to a pinch singularity if the colliding branch points
manage to catch the integration contour between
them. We will now study when these possibilities
actually occur and take up (a) to (d) above.

(a) The aualytic continuation of I(x) into the com-
plex x plane is not single valued. For if x makes
a small circuit of 27 about =1, £,(x) rotate about
t=1 by 7 cnd pull the contour around with them ar-
riving at the situation of Fig. 1. This multivalued-
ness of I(x) can be avoided by attaching a branch
cut in the complex x plane to x=1 and extending it
along the real axis to x=<; then /,(x) will always
avoid the integration contour and I(x) will be single
valued in this cut x plane.

With I(x) defined as above, it is also apparent
that there can be no pinch singularity at x=- 1 {on
this Riemann sheet) since this would require one
of ¢_(x) to cross the contour and drag it to f=-1.
With the cut in x along [1,%) this is plainly itapos-
sible. This proves (a).

(b) We can also determine the behavior of I(x)
when x is near the branch point at x=1. This only
requires expanding x(-1n#)t*"'/2 in a power series
about =1 (where it is clearly analytic). Exchange
the resulting sum and integration and evaluate the
integrals term by term. The result is that in a
neighborhood of x=1,

I(x)=f,((1 = x)/2)In(1 - x)/2
+1( = x) /2], - x)/2]V?), (16)

where f,(2) and f,(z) are analytic at z=0.

(c) The integral representation (14) also allows
us to determine the structure of I(x) as an extended
analytic function on its other Riemann sheets. Be-
gin with x on the real axis near and to the left of x
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t-PLANE

— t,(x)
X L t=1

A 4

X

T to(x)

FIG. 2. Contour obtained from Fig. 3 after x executes
a circuit of 4m about x =1.

=1 and let x make a small counterclockwise circle
about x=1 to an adjacent Riemann sheet. Then the
singularities #,(x) execute counterclockwise semi-
circles about £=x (with =1 interior to this circle)
and exchange positions—one passing through the
contour which must be deformed to avoid it and the
other passing around the right of {=1. The result-
ing configuration in the ¢ plane is exhibited in Fig.
1.

Figure 1 defines I(x) on an adjacent Riemann
sheet. This one also has an end-point singularity
at x=1. Furthermore, another rotation by 7 clock-
wise or counterclockwise yields different results
so that x=1 is again a branch point and there is
again a cut along the real axis, 1< x<w, Another
21 counterclockwise rotation of x about x=1 (be-
ginning from Fig. 1) brings us to Fig. 2. A com-
parison of Fig. 3 and Fig. 2 shows that the differ-
ence between the integrals they define is just an-
other contour integral defined by Fig. 4. So a coun-
terclockwise rotation of x from the first (physical)
sheet by 47 about x=1 yields I(x) again plus an ad-
ditional function defined by Fig. 4. This is pre-
cisely the kind of behavior expected from (16).

I(x) on the sheet defined by Fig. 1 (and indeed on
all sheets but the first) has an additional singularity
at x=- 1. This time the possibility raised above
of a pinch singularity at x=- 1 is realized. To see
this consider what happens to Fig. 1 as x moves
along the real axis from x=1 toward x=- 1. The
two singularities in Fig. 1 move in opposite direc-
tions around the unit circle and collide at f=-1 as
x -~ — 1+, The resulting pinch is illustrated in Fig.

t-PLANE

x/t,(x)

x'\t=l
T—t_(x)

FIG. 3. Contour in the complex ¢ plane defining the
integral I(x) on its physical sheet.

t-PLANE

te(x)

FIG. 4. Contour specifying the change in I (x) after x
makes a circuit of 47 about x =1. (The difference of in-
tegrals defined by Fig. 2 and Fig. 3.)

5. So x=-1is a singular point. If we continue

to move x to real values to the left of x=-1, we
need to pass either above or below the singularity,
and the resulting integral depends on the choice.
So I(x) on this sheet (defined by Fig. 1) also has a
singularity at x=- 1 and requires a branch cut
along x real and x < - 1, say.

(d) The nature of this singularity is determined
as before by making a small circuit of 27 about x
=~ 1 and observing that I(x) is recovered again
with the addition of a contour integral defined by
Fig. 6. So this singularity behaves as

I(x)=fo((1 +x)/2) In(1 + %) /2 +f (1 + x)/2) (17)

in a neighborhood of x=- 1. f,(z) and f,(z) are once
more analytic at z=0. Equation (17) may also be
verified by methods analogous to those which led
to (16).

Thus a clear picture of the analytic structure of
I(x) emerges. On the first sheet (Fig. 3), there is
a branch point at x =1 with a cut along the real axis
1< x<, The behavior of I(x) near the branch
point is described by (16). On each of the other
sheets, in addition to the branch point and assoc-
iated cut beginning at x =1, there is an additional
branch point at x=— 1 with a cut along real x, —«
<x< -1, The behavior of I(x) near x=- 1 on these
sheets is described by (17).

The change in I(x) on any sheet after a small cir-
cuit of 47 about x=1 is given by a contour integral
defined by Fig. 4, while the change after a small

t-PLANE

/t.(x)
X

7/

/% g
t=-1 = / t=1

to(x)

FIG. 5. Contour illustrating the pinch singularity of
I(x) at x =—1 on the Riemann sheet defined by Fig. 1.
Arrows show the motion of £,(x) as x — —1+.
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t-PLANE
te(x)

Ty

~1t.(x)

FIG. 6. Contour specifying the change in I(x) on sheet
of Fig. 1 after x executes a circuit of 2r about x =-1.

circuit about x=- 1 by 27 is defined by Fig. 6.

One more remark is in order here. The analy-
ticity we describe is that of I(x), not f{x). Recall
the relation between these defined by (13). In par-
ticular the singularity [(1 - x)/2]™* in I(x) at x=1

does not appear in flx). Apart from this the dis-
cussion above for I(x) also applies to f(x).
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